首页 > 生信分析 > 样本组间差异分析 > PCoA 主坐标分析

PCoA 主坐标分析

  Unifrac 分析得到的距离矩阵可用于多种分析方法,可通过多变量统计学方法PCoA 分析,直观显示不同环境样品中微生物进化上的相似性及差异性。

  PCoA(principal co-ordinates analysis)是一种研究数据相似性或差异性的可视化方法,通过一系列的特征值和特征向量进行排序后,选择主要排在前几位的特征值,PCoA 可以找到距离矩阵中最主要的坐标,结果是数据矩阵的一个旋转,它没有改变样品点之间的相互位置关系,只是改变了坐标系统。通过PCoA 可以观察个体或群体间的差异。

分析软件:R 语言PCoA 分析和作PCoA 图。

  unifrac.pcoa.tiff :样品PCoA 分析图

参考文献:

  Xiao-Tao Jiang ,Xin Peng, et al.Illumina Sequencing of 16S rRNA Tag Revealed Spatial Variations of Bacterial Communities in a Mangrove Wetland. Microb Ecol (2013) 66:96–104.DOI10.1007/s00248-013-0238-8.

Pcoa01
PCoA主坐标分析

  注:PC1 和PC2 是两个主坐标成分,PC1 表示尽可能最大解释数据变化的主坐标成分,PC2 为解释余下的变化度中占比例最大的主坐标成分,PC3 等依次类推。